GEVC Boost Solar Charge Controller

with

GANZ Semi Flexible Solar Panel

for 36V & 48V Battery System

CBC (AMERICA) Corp.
Eco-Energy Div.
Standard Approach for 36V/48V Systems

- Electric Inboard Motors, Electric Outboard Motors and Golf Carts require 36V or 48V nominal charging systems.
- Solar panels are an excellent source of energy for the environment.
 PROBLEM: Most standard solar panels are nominally 12V.
- Typically input voltage is increased by connecting 3 or 4 panels in series.
 PROBLEM: Shading of one solar panel reduces output of all the panels.
 Charging efficiencies are reduced (60-75%)
 Risk of dangerous high voltage.
Approach for 36V/48V Systems

- CBC America’s GEVC Boost Solar Charge Controller is an advanced dual function device. Specifically designed and optimized to charge Electric Motor Systems.

Function 1: GANZ GSP 12VDC nominal solar panel is converted to desired higher output voltage 36VDC, 48VDC.

Advantage: No series connections required
- High input voltage risks negated
- Shading issues reduced

Function 2: MPPT solar charge controller with nominal output voltage 36VDC, 48VDC. Efficiently prevents battery overcharge.

Advantage: Superior performance and efficiency (≥96%)
System Advantages with GANZ panels

GANZ GSP solar panel coupled with GEVC Boost Solar Charge Controller is the Perfect combination

• Solar panel is Extremely Light In Weight and Semi-Flexible.
• Solar panel fits perfectly on boats and golf cart tops.
• Non glass design eliminates concerns of flying golf balls, hail and/or any other hard objects breaking the solar panel.
• The GANZ GSP solar panels are double the efficiency compared with existing light weight amorphous panels. Double the power in the same space.
• Ability to produce power under shaded and less than perfect conditions.
• Easy installation on boats golf carts and other electric vehicles.
GEVC 12-36/48 3A

Input: Connect to Solar Panels
Individual #16 AWG 2 pairs wire to connect with multiple solar panels

Output: Connect to Batteries

Output voltage is 48V when two orange signal wire wires are connected together, and voltage is 36V when unconnected.

5A Fuse and Terminal Rings are pre-connected
Do not connect exceed two solar panels per input wire

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>12V Nominal Solar Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Input Voltage</td>
<td>30 VDC</td>
</tr>
<tr>
<td>Max Input Current</td>
<td>10 ADC</td>
</tr>
<tr>
<td>Nominal Battery</td>
<td></td>
</tr>
<tr>
<td>36V System</td>
<td>48V System</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>42 VDC</td>
</tr>
<tr>
<td>Output Current</td>
<td>4 ADC</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>< 0.1 ma</td>
</tr>
<tr>
<td>Enclosure</td>
<td>NEMA 4 (Weatherproof)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>4" X 3" X 2"</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 1.4 lbs</td>
</tr>
<tr>
<td>Input Wire</td>
<td>2 pairs (Red, Black), #16AWG , 3ft</td>
</tr>
<tr>
<td>Output Wire</td>
<td>#16AWG, 3ft</td>
</tr>
<tr>
<td>Signal Wire</td>
<td>2 X Orange #22AWG</td>
</tr>
</tbody>
</table>

Signal Wires
GEVC 12-36/48 6A

Input: Connect to Solar Panels
Individual #16 AWG 4 pairs wire to connect with multiple solar panels

Output: Connect to Batteries

Output voltage is 48V when two orange signal wires are connected together, and voltage is 36V when unconnected.

10A Fuse and Terminal Rings are pre-connected

Do not connect exceed two solar panels per input wire

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>12V Nominal Solar Panel</th>
<th>30 VDC</th>
<th>20 ADC</th>
<th>36V System</th>
<th>48V System</th>
<th>42 VDC</th>
<th>56 VDC</th>
<th>8 ADC</th>
<th>6 ADC</th>
<th>< 0.1 ma</th>
<th>< 0.1 ma</th>
<th>NEMA 4 (Weatherproof)</th>
<th>6" X 6" X 3"</th>
<th>approx. 2.2 lbs</th>
<th>4 pairs (Red, Black), #16AWG, 3ft</th>
<th>#16AWG, 3ft</th>
<th>2 X Orange #22AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>12V Nominal Solar Panel</td>
<td></td>
<td></td>
<td>30 VDC</td>
<td>20 ADC</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Max Input Voltage</td>
<td>30 VDC</td>
<td></td>
<td></td>
<td>30 VDC</td>
<td>30 VDC</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Max Input Current</td>
<td>20 ADC</td>
<td></td>
<td></td>
<td>20 ADC</td>
<td>20 ADC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Nominal Battery</td>
<td>36V System</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>36V System</td>
<td>36V System</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>42 VDC</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>42 VDC</td>
<td>42 VDC</td>
<td>42 VDC</td>
<td>56 VDC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Output Current</td>
<td>8 ADC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>8 ADC</td>
<td>8 ADC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>8 ADC</td>
<td>6 ADC</td>
<td>< 0.1 ma</td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>< 0.1 ma</td>
<td></td>
<td></td>
<td>< 0.1 ma</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Enclosure</td>
<td>NEMA 4 (Weatherproof)</td>
<td></td>
<td></td>
<td>NEMA 4 (Weatherproof)</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>6" X 6" X 3"</td>
<td></td>
<td></td>
<td>6" X 6" X 3"</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 2.2 lbs</td>
<td></td>
<td></td>
<td>approx. 2.2 lbs</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Input Wire</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td></td>
</tr>
<tr>
<td>Output Wire</td>
<td>#16AWG, 3ft</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
<tr>
<td>Signal Wire</td>
<td>2 X Orange #22AWG</td>
<td>NEMA 4 (Weatherproof)</td>
<td>6" X 6" X 3"</td>
<td>approx. 2.2 lbs</td>
<td>4 pairs (Red, Black), #16AWG, 3ft</td>
<td>#16AWG, 3ft</td>
<td>2 X Orange #22AWG</td>
</tr>
</tbody>
</table>
GEVC Boost Charge Controller Selection Guide

Short Circuit Current - # Solar Panel vs. Output Voltage

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Quantity of GSP-55 Panels in Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>48V</td>
<td>0.9</td>
</tr>
<tr>
<td>36V</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Quantity of GSP-40 Panels in Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>48V</td>
<td>0.6</td>
</tr>
<tr>
<td>36V</td>
<td>0.8</td>
</tr>
</tbody>
</table>

GEVC 12-36/48 3A can be connected with 3 GANZ GSP-55 (55W) or 4 GANZ GSP-40 (40W) solar panels, GEVC 12-36/48 6A can be connected with 6 GANZ GSP-55 (55W) or 8 GANZ GSP-40 (40W) solar panels connected in parallel.

Do not connect exceed number of solar panels with GEVC controller in this guide.
48V System for Electric Inboard drive system – (1)

- **GANZ GSP-55 (55W) X 4 panels**
- **Parallel Connection** for Series Connection of 4 battery banks
- **Max. Output:** 220W
- **Max. Output Current:** 3.6 Amps

Batteries: Series Connection
12V X 4 = 48V system

House Bank 1, **House Bank 2**, **House Bank 3**, **House Bank 4**

Solar Panel: Parallel Connection

GEVC 12-36/48 6A
12V solar panel to 48V batteries

GEVC Controller
48V System for Electric Inboard drive system – (2)

GANZ GSP-40 (40W) X 6 panels
Parallel Connection
for Series Connection of 4 battery banks

Signal wires connected together

Max. Output: 240W
Max. Output Current: 3.8 Amps

Batteries: Series Connection
12V X 4 = 48V system

Solar Panel: Parallel Connection

GEVC 12-36/48 6A
12V solar panel to 48V batteries

GEVC Controller
48V System for Electric Inboard drive system – (3)

GANZ GSP-40 (40W) X 4 panels
Parallel Connection
for Series Connection of 4 battery banks
Signal wires connected together

Max. Output: 160W
Max. Output Current: 2.5 Amps

Batteries: Series Connection
12V X 4 = 48V system

Solar Panel: Parallel Connection

GEVC 12-36/48 3A
12V solar panel to 48V batteries

House Bank 1
House Bank 2
House Bank 3
House Bank 4

GEVC Controller
48V System for Electric Outboard Motor

GANZ GSP-55 (55W) X 1 panel for Series Connection of 4 battery banks

Signal wires connected together

Max. Output: 55W
Max. Output Current: 0.9 Amps

Batteries: Series Connection
12V X 4 = 48V system

GEVC 12-36/48 3A
12V solar panel to 48V batteries

Unused wires are left disconnected, Panel can be added at a later time to increase overall power
48V System for Electric Outboard Motor

GANZ GSP-55 (55W) X 2 panel for Series Connection of 4 battery banks

- Signal wires connected together
- GEVC 12-36/48 3A 12V solar panel to 48V batteries
- GEVC Controller
- 5A Fuse
- House Bank 1
- House Bank 2
- House Bank 3
- House Bank 4

Max. Output: 110W
Max. Output Current: 1.8 Amps

Batteries: Series Connection 12V X 4 = 48V system
48V System for Golf Cart

GANZ GSP-55 (55W) X 1 panel
for Series Connection of 6V X 8 battery banks

Max. Output: 55W
Max. Output Current: 0.9 Amps

Batteries: Series Connection
6V X 8 = 48V system

Signal wires connected together

Unused wires are left disconnected,
Panel can be added at a later time
to increase overall power

GEVC 12-36/48 3A
12V solar panel to 48V batteries
36V System for Golf Cart – (1)

GANZ GSP-55 (55W) X 1 panel for Series Connection of 6V X 6 battery banks

- **Max. Output:** 55W
- **Max. Output Current:** 1.2 Amps

Signal wires not connected

Unused wires are left disconnected,
Panel can be added at a later time to increase overall power

GEVC 12-36/48 3A
12V solar panel to 36V batteries

Batteries: Series Connection
6V X 8 = 48V system

GEVC Controller
36V System for Golf Cart – (2)
GANZ GSP-55 (55W) X 2 panels
for Series Connection of 6V X 8 battery banks

Max. Output: 110W
Max. Output Current: 2.4 Amps

Batteries: Series Connection
6V X 8 = 48V system

GEVC 12-36/48 3A
12V solar panel to 36V batteries

Signal wires not connected

Unused wires are left disconnected,
Panel can be added at a later time
to increase overall power